Numerical Solution of Boundary Value Problem by Using Wavelet-Galerkin Method
نویسندگان
چکیده
In this paper we show that wavelets can be used as basis functions for Galerkin methods. For differential equations, finite element or finite difference methods lead to matrices that are already shown to be sparse, but they tend to be ill-conditioned, [4]. In this paper, we show that wavelet basis gives sparse matrix with low condition number for Galerkin methods. Numerical examples are presented to show the advantages of wavelet basis.
منابع مشابه
CAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS
In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...
متن کاملA numerical approach to solve eighth order boundary value problems by Haar wavelet collocation method
In this paper a robust and accurate algorithm based on Haar wavelet collocation method (HWCM) is proposed for solving eighth order boundary value problems. We used the Haar direct method for calculating multiple integrals of Haar functions. To illustrate the efficiency and accuracy of the concerned method, few examples are considered which arise in the mathematical modeling of fluid dynamics an...
متن کاملWavelet Method for Numerical Solution of Wave Equation with Neumann Boundary Conditions
In this paper, we derive a highly accurate numerical method for the solution of one-dimensional wave equation with Neumann boundary conditions. This hyperbolic problem is solved by using semidiscrete approximations. The space direction is discretized by wavelet-Galerkin method and the time variable is discretized by using various classical finite difference schemes. The numerical results show t...
متن کاملNumerical solution of optimal control problems by using a new second kind Chebyshev wavelet
The main purpose of this paper is to propose a new numerical method for solving the optimal control problems based on state parameterization. Here, the boundary conditions and the performance index are first converted into an algebraic equation or in other words into an optimization problem. In this case, state variables will be approximated by a new hybrid technique based on new second kind Ch...
متن کاملSolution of Troesch's problem through double exponential Sinc-Galerkin method
Sinc-Galerkin method based upon double exponential transformation for solving Troesch's problem was given in this study. Properties of the Sinc-Galerkin approach were utilized to reduce the solution of nonlinear two-point boundary value problem to same nonlinear algebraic equations, also, the matrix form of the nonlinear algebraic equations was obtained.The error bound of the method was found. ...
متن کامل